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Abstract—Gradient-based optimizers are crucial for the success
of deep learning methods; however, such optimizers frequently
suffer from slow convergence and can become trapped in subopti-
mal local minima or plateaus. To overcome this issue, we propose
a novel optimization technique called Monomial Equivalence -
Interleaved Training (ME-IT) to augment well-known optimizers.
ME-IT periodically applies a monomial matrix transform—a
computationally cheap, loss-preserving transformation that lever-
ages the inherent symmetries of the network. This “re-locates”
the model to a functionally identical but parametrically different
location on the loss level-set, enabling the network to explore the
loss surface and find favorable points for continued gradient de-
scent. Experiments on the MNIST dataset demonstrate that ME-
IT-applied models converge significantly faster and discover final
solutions with lower loss and higher accuracy than their state-of-
the-art counterparts. A test accuracy improvement of ~ 0.3% is
achieved on the MNIST dataset with respect to the model with
Cosine Annealing with Warm Restarts, and a training speedup
of around 2x is reached for shorter training sessions. This work
establishes that strategically leveraging network symmetries is
a practical tool for improving and accelerating deep learning
optimization.

I. INTRODUCTION

Successful Deep Learning (DL) methods rely on the efficacy
of gradient-based optimizers. Even though optimizers like
Stochastic Gradient Descent (SGD) or Adam [1] have been
deployed to a great extent for training complex neural architec-
tures, descending a non-convex landscape with such methods
[2] has various important aspects to consider for achieving
high-performance in a short time. Namely, the unknown and
challenging topology of the loss landscape may force the
existing optimizers to converge to suboptimal minima, if not
stall them completely. Current optimizers tend to get stuck on
wide and flat plateaus and take many iterations to converge.
Even so, inability to effectively escape local minima causes
models to have poor generalization performance.

Overcoming such limitations is an important challenge
in DL. To this end, we propose a novel training scheme,
ME-IT. ME-IT interleaves parameter updates with loss-
preserving network-wide transformations to descend from a
loss-equivalent but steeper point on the loss surface. Namely,
network weights can be transformed via monomial groups that
exploit inherent symmetries of feedforward neural networks
(FNNs). [3] has previously established that FNNs exhibit
equivalences under monomial group actions under certain
conditions. Inspired by this, we propose to exploit such
equivalences and transform the network weight before param-
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eter updates via computationally inexpensive, loss-preserving
monomial transforms. This allows the network to continue its
descend from a different point on the same loss level set. Thus,
our contributions in this work are threefold:

1) We propose ME-IT algorithm, a novel method that
interleaves transforms between monomial equivalent net-
works and parameter updates to effectively escape loss
plateaus and suboptimal parameter configurations.

2) We empirically demonstrate that training standard mod-
els with ME-IT leads to significantly faster convergence
rates and the discovery of better final solutions on
benchmark classification tasks using the MNIST [4]
dataset.

3) We show that the resulting models achieve not only
lower final training loss but also higher test accuracy,
indicating that the ability to escape poor local minima
translates to improved generalization.

In Section II, we present a review of existing network
symmetries and studies on loss surfaces. In Section III, we
describe ME-IT algorithm with key observations. Then, we
compare ME-IT with Cosine Annealing with Warm Restarts
(CAWR) learning rate scheduler empirically and conduct ab-
lation studies on ME-IT parameters in Section IV.

II. RELATED WORK
A. Permutation Symmetry in Feedforward Networks

The existence of symmetries in the parameter space of FNN's
has long been recognized as a fundamental property. Foun-
dational work [5] shows network parameters to approximate
the target input-output mapping are not necessarily unique.
One particular and well-established equivalence is permutation
symmetry, which can be achieved by rearranging m many
neurons of a Multi-Layer Perceptron (MLP). By permuting
corresponding neurons in adjacent layers, the input-output
function of the overall network can be preserved, implying
at least n! many equivalent parameter configurations for each
such layer, leading to a factorial explosion of functionally
identical solutions in the total weight space [6].

Even though the existence of such equivalences implies
global minima points are repeated, it also implies optimization
of network parameters initialized from a random point will be
challenging. Namely, [7] investigated how these symmetries
affect the loss landscape geometrically, and demonstrated that
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permutation symmetries induce first-order saddle points lo-
cated on the paths connecting multiple equivalent minima. [7]
proved continuous paths between symmetric solutions exist.
This shows that these are critical points located within high-
dimensional plateaus of constant loss. The presence of these
symmetry-induced saddle points and the associated flat regions
can significantly slow or stall the convergence of first-order
optimization methods like SGD, which rely on local gradient
information to navigate the parameter space.

[3] has characterized monomial matrix group action on
the weight space of a network. By definition, a monomial
matrix is the product of a permutation matrix and a non-
singular diagonal matrix. It is a square matrix with exactly
one non-zero entry in each row and column. This definition
implies that monomial matrices combine discrete permutations
with continuous scaling, as pointed out by [3]. This extends
discrete permutation symmetry to a broader and more general
group of continuous transformations, particularly for networks
employing positively homogeneous activation functions, such
as the Rectified Linear Unit (ReLU) and its variants. For these
networks, the computed function is invariant not only to neuron
permutation but also to scaling transformations. Specifically,
the incoming weights of any given neuron can be scaled
by a positive scalar ¢, and as long as its outgoing weights
are correspondingly scaled by 1/¢, the network’s input-output
function remains unchanged. [3] established that for many
standard feedforward architectures with ReLLU-like activations,
the monomial matrix group represents the maximal symmetry
group of the network function.

Our work is predicated on this insight, using transformations
from this group to navigate the parameter space. Specifically,
these insights hint that optimal solutions do not exist as isolated
points in the weight space. Instead, they form continuous, high-
dimensional manifolds or level-sets of constant loss. Hence,
a parameter vector # can be transformed via a symmetry
operation, e.g., a monomial matrix transformation, into 6’ such
that the loss £(0) = L£(0’). Thus, we propose to transform
the optimization problem from a search for a single point to
the identification of a desirable high-dimensional manifold of
solutions.

B. Mode Connectivity

The notion of optimal points lying on continuous manifolds
had been empirically and theoretically established with the
concept of mode connectivity. This phenomenon refers to the
ability to find a simple, high-accuracy path through the weight
space that connects two distinct solutions found by indepen-
dent training runs of SGD. Initial work [8] demonstrated that
it is possible to find simple curves (e.g., Bezier curves with
only one or two control points) connecting two independently
trained models, along which the training and test error remain
arbitrarily low.

This finding was further investigated by [9], who argued that
for sufficiently overparameterized networks, these minima are
not just pairwise connected but belong to a single, contiguous
basin of attraction. They provided evidence that “essentially

no barriers” with high loss exist between these solutions. This
body of research strongly suggests that the set of good solu-
tions forms a single, connected component in the weight space.
This topological structure provides the geometric foundation
for the proposed “relocation” mechanism, which is essentially
a discrete method for traversing these level-sets.

C. Implicit Geometric Methods

Some recent work argues that wide, flat minima tend
to generalize better than sharp, narrow ones. Accordingly,
methods such as Stochastic Weight Averaging (SWA) [10]
and Sharpness-Aware Minimization (SAM) [11] have been
proposed to exploit the loss landscape’s inherent structure
rather than employing algebraic symmetries. SWA maintains
a running average of the model weights encountered during
the later epochs of training. SAM seeks to find parameter
values that lie in neighborhoods with uniformly low loss,
effectively finding flat minima by solving a min-max optimiza-
tion problem. These methods mainly focus on improving the
generalization of neural networks and reducing gradient noise.
Yet, due to their bias towards wide minima, they tend to take
some time to converge fully.

D. Explicit Symmetry-Based Methods

In contrast, other approaches have sought to directly ex-
ploit the known algebraic symmetries of the weight space. A
prominent application is in model merging and ensembling.
[12] developed a technique, “Git Re-Basin,” that can merge
two independently trained models by finding an optimal per-
mutation that aligns their neurons. By solving the assignment
problem to match neurons between the models before averag-
ing their weights, this method places them into an equivalent
basin of attraction, enabling effective merging where naive
weight averaging would fail. This work directly addresses
permutation invariance to achieve its goal. Yet, it requires two
independently trained models so that their parameters can be
averaged. Concurrently, other lines of research have explored
the dynamic rewiring of network connectivity during training,
using learnable permutations to achieve structural plasticity,
particularly for tasks in non-stationary environments [13].

E. Learning Rate Schedulers

To increase model generalization and decrease the training
time, learning rate schedulers have been proposed to adaptively
tune the learning rate during training. In [14], the classical mo-
mentum technique has been proposed, in which the optimizer
accumulates a velocity vector parallel to a persistent reduction
and increases the learning rate when moving in that direction.
This allows for faster learning at steep loss surfaces. In [15],
Cosine Annealing with Warm Restarts (CAWR) has been pro-
posed, and it has been the preference of DL applications since.
CAWR reduces the learning rate until a predefined threshold
in a cos wave and jumps back to the initial rate. [15] has
shown that much faster convergence and better generalization
is possible with CAWR. In Section IV, we compare ME-IT
and CAWR empirically.
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III. MONOMIAL EQUIVALENCE - INTERLEAVED TRAINING
(ME-IT) METHOD

In this section, we describe the ME-IT method that aims to
augment the gradient descent with loss-preserving structured
monomial transforms to hopefully continue the descent from
a more favorable location on the loss surface. We begin by
formally defining monomial matrices in Definition III.1.

Definition IIL.1. A matrix A of size nxn is called a monomial
matrix (or generalized permutation matrix) if A has exactly
one non-zero entry in each row and column. We will use G,,
to denote the set of such matrices.

Note that Definition III.1 implies G,, can also be written as
G,.={PD|PeP, DeD,}, (D

where P,, and D, are the sets of n X n permutation ma-
trices and invertible diagonal matrices on R™*™, respec-
tively. Now, suppose f : R™ — R™ represents an FNN
with weight matrices {Wy, Wy, ..., Wr_;, W},
bias vectors {by,...,br}, and piecewise linear activation
functions {o1,...,01} at each layer. Then the adjusted
FNN f with the same structure as f, but with weights
{M W1, MoWoM, ., M WMy, WM}
and bias vectors {Miby, Masby, ..., Mp_1bp_1, br}
is functionally equivalent to f, VM; € G (ie. f(z) =
f(x) Va € R™). This can be seen by expanding the feed-
forward operation of an input x as

or [WLML__llo'L—l (ML—1WL—1ML__120’L—2(' )
+ ML—lbL—1> + bL}

=0L [WLULA(WLAULQ(' ) +bro1) + bL} , (@)

since activations oy, VIl € [1,L] are piecewise linear. This
observation leads to the following lemma.

Lemma TIL.1. A set of generalized permutation matrices {M;}
acting on a feedforward neural network f transforms f onto
a new network f on the level set of the loss surface.

The proposed ME-IT technique builds upon Lemma III.1,
and augments existing gradient-based methods. Thus, the core
principle is to hybridize the training process by introducing
a new operation, the “relocate,” to complement the standard
descent step. The training loop alternates between two primary
states:

« DESCEND: In this state, the model parameters W are
updated using the chosen base optimizer according to the
local gradient of the loss function £(WV).

« RELOCATE:A loss-preserving transformation is applied
to the weights, moving the model to a new point W’ such
that L(W') = L(W).

This allows the optimizer to escape unfavorable local geome-
tries from which the DESCEND operation alone cannot easily
recover.

A. The Monomial Relocation Transformation

The key mechanism enabling the RELOCATE operation is
a symmetry transformation based on monomial matrices. A
monomial matrix M € G, is a square matrix having exactly
one non-zero entry in each row and column.

Given a hidden layer [ with weight matrix W; and bias b; and
the subsequent layer [ + 1 with weights 1W;,;, the monomial
relocation is defined by the following updates:

W, — MW, s (3)
Wi — Wi M )
bl — Mbl . 5

The permutation matrix P effectively reorders the neurons
in layer [, while the diagonal matrix D scales them. The
compensating transformation M ~! applied to the next layer’s
weights perfectly neutralizes this effect, given the activation
function is homogeneous, ensuring that the input to layer
[ 4 2 and all subsequent network outputs remain unchanged.
Consequently, the value of the loss function £(TV) is exactly
preserved. The above transformation is applied to each layer
in the network. An important aspect to consider is when to
apply the ME-IT transformation to the network weights. The
following lemma demonstrates that transforming before and
after gradient steps would yield different results.

Lemma T1.2. Let M(-) denote the ME-IT transformation and
SGD(+) denote one step of gradient descent. Then, operators
M(-) and SGD(-) do not commute, i.e.,

SGD(M(8)) # M(SGD(8)) . ©®)

Proof: Suppose SGD(M (6)) = M(SGD(6)) . Observe
that transforming network weights after gradient descent yields
the following parameter updates for layer :

Wi <MW; —nM (Vw, L), , @)
by <~Mb; —nM (Vy, L), , ()
Wip1 «WipM— —n (Vw,,, L), M, 9)

where (Vw, L)y, (Vi, L)y, (Vw,,, L), denote the gradient of
the loss L at point 6 w.r.t. parameters W;, b;, and W4,
respectively, and 7 is the learning rate. On the other hand,

transformed parameters W, = MW,, b, = Mb;, and
i = Wi M ~! will yield parameter updates:

Wl W = (Vw:L),, . (10)

by < b, —n (Ve L), , (11)

L e W= (VW£+1L>0/ . (12)

Now, observe that gradients w.r.t. transformed parameters can
be shown as

(VWJ L)(,, =M~" (Vw, L)y , (13)
(Vb;L)e, =M (VL) (14)
(VW,[HL)G/ = (Vw,, L), M" . (15)
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Thus, SGD(M () = M (SGD(6)) implies MT = M~1, yet
this forms a contradiction as M7 M = D? # I for a general
monomial matrix. This completes the proof. ]

Lemma II1.2 shows that the order of ME-IT and parameter
updates matters. Thus, we apply ME-ITs before each parameter
update so that the training process can be sped up significantly
when the transformation carries the network parameters to a
much steeper point. In the next section, a method to ensure
this is presented.

Remark. A critical implementation detail is the handling of the
base optimizer’s internal state. When a relocation is performed
on weights W; and Wy, 1, their local geometric context is com-
pletely changed. Therefore, the historical information stored
by the optimizer, such as momentum and variance estimates
in Adam [1], becomes invalid for these specific parameters.
One can choose to either reset such variables or adapt them
using the relocation matrices.

B. Generating Relocation Matrices

In this section, we propose a heuristic for generating M =
PD such that the relocation operation yields maximal effect
on training, and the transformed network parameters are at a
steeper point. The proposed heuristic aims to maintain training
stability by setting a maximal benefit factor r. Using the update
equations (10), (11), and (12) with the known fact that AL =
—nTr(VLTV L) for gradient descent, the expected loss change
of doing a descent operation (under the linearity assumption)
without and with a relocation can be written, respectively, as:

N
(AL)Yap =1 (VW LY 15V w. £)515+ V5. L]3)

j=1

N
; 1
(AL)r=-n) (dﬁll(Vwmﬁ)Jlg + 21 (Vw0513
j=1 J

+ ||Vb7.,£%)) : (16)
where (Vw,,,£)? denotes the j’th row of Vy, L. Let
fi(d;) = (AL)r/(AL)gp. Maximizing f;(d;) would imply
the maximal benefit and the fastest descent is achieved under
the linear approximation assumption. Yet, observe that f;(-)
is a concave function and f;(d;) are unbounded, thus it can
endanger training stability. Furthermore, the Hessian of the
parameters grows with d?, invalidating the benefit functions
above by changing linearity around the point 6. This ne-
cessitates imposing some limits on d;. When d; = 1, we
have f;(d;) = 1, implying ME-IT is equivalent to usual
gradient descent. Observe that d‘; appears as a multiplicative
and divisive term in (16). To avoid gradients blowing up
or diminishing, we propose to set d; to conservative values
around 1. Namely, for d; > 1, the term with ||V, L3
would dominate the sum in (16). Likewise, when d; < 1, the
sum in (16) is being dominated by ||(Vw,L);[3 + || Vs, £]|3.
Consider the case when f;(d;) = r, for some r» € R. The
corresponding cij = djly,(d,)=r can be either (fj > 1lor (ij <1

When a?j < 1, we clamp CZ]‘ to 1 — o, so that (16) does not
blow to infinity. Similarly, due to unbounded nature of f;, we
clamp a?j to 1+ o when ch > 1. Hence, for a desired benefit
factor r, the final value for D = diag(dy,...,dy) is given by

d; :clamp(cij,[l—a,1+0]) ) a7

where o and r are the hyper-parameters for ME-IT. By tuning
o and r, it is possible to speed up the training process
significantly while maintaining conservative jumps so that the
resulting point from which SGD will be conducted is still
stable.

By Lemma IIL.1 and selecting D such that f;(d;) > 1,
the transformed point is at least as favorable as the original
parameters € in terms of gradient descent performance. This
way, we aim to continue descending on a steeper surface until
the next relocation phase.

IV. RESULTS

All experiments are conducted on an MLP with ReLU
activations shown in Fig. 1, trained on the MNIST [4] dataset
with 60K training images and 10K test images. The hyper-
parameters for the benchmark CAWR are: number of iterations
before the first restart 7y = 10, increasing factor of epoch
interval between two restarts 7,,;; = 1, minimum learning
rate 7in = 0.

A. Training and Test Performance

We begin our empirical analysis with a direct comparison of
the training dynamics between a standard SGD optimizer with
the addition of CAWR and our proposed ME-IT optimizer.
Fig. 2 illustrates a representative training run on the target
dataset over 100 epochs, demonstrating the decay of the
training loss and the rise of test accuracy for various baseline
models along with ME-IT trained model.

The results demonstrate that ME-IT can make the training
loss descend rapidly around epoch 30, and converge to a
lower value than all baseline models. Furthermore, this sharp
decrease also affects the test accuracy, obtaining a test accuracy
0.3% higher than the highest baseline. This demonstrates that
ME-IT optimizer poses as an efficient optimization method
that can escape local minima to quickly converge.

ME-IT optimizer tends to fall behind the baseline until
epoch 30 during training. This slow-start problem can be
overcome by using learning rate scheduling whenever the
jump strategy falls on the conservative side, where monomial
matrices have condition numbers very close to 1. This regime
is close to just using SGD, and is suitable for learning rate
schedulers to speed up the training process.

B. Robustness and Interaction with Learning Rate

In this section, we conduct a grid search to investigate how
o and r choices change the performance and generalization
of an ME-IT trained model. We evaluate the performance of
the ME-IT optimizer against the baseline across five o values
(ranging from 0.3 down to 0.1). For each learning rate, we
varied r between 5 and 40. The results, averaged over multiple
runs, are presented in Fig. 3.
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Fig. 1.
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Fig. 2. Training dynamics comparing our ME-IT augmented optimizer (blue)
against a standard baselines. (a) Training Loss over 200 epochs. (b) Test
Accuracy (%). The base learning rate is 0.1 unless otherwise stated.
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Fig. 3. Final test accuracy after 100 epochs as a function of jump variance,
evaluated across five different o and r values. The baseline can be seen at the
upper right corner.

The most salient observation from Fig. 3 is that the ME-
IT-enhanced optimizer consistently outperforms the baseline
optimizer across a o region of [0.1,0.25]. For ¢ = 0.3,
however, we observe that the ME-IT method starts to perform
worse. For each o € [0.1,0.25], the performance of the ME-
IT model is statistically higher than the baseline, as indicated
by the non-overlapping standard deviations. This strongly
suggests that the benefits of the jump mechanism are not
contingent on a finely-tuned hyperparameter but are instead
available for a wide range of o and r choices.

Lastly, we investigate learning rates 7 =
[0.05,0.1,0.15,0.25,0.3] to see how the benchmark an
proposed ME-IT perform. We test with o = 0.05,0.1,0.2 for
each learning rate. The resulting test accuracies averaged over
5 different seeds are given in Fig. 4.

In Fig. 4, ME-IT with 0 = 0.05 obtains the highest peak
accuracy, whereas ME-IT with ¢ = 0.1 comes second. Under
high learning rates, o > 0.05 creates stability issues and causes

MLP Architecture on which Experiments are Conducted

—&— ME-IT (r = 30,0 = 0.05)
—&— ME-IT (r =30,0 = 0.1)
—&— ME-IT (r =30,0 = 0.2)
98.6 —&— CAWR (T, = 20)

©
1

Test Accuracy
©
2
v

98.0 4

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30
7 (Learning Rate)

Fig. 4. Relation between Learning Rate and Test Accuracy of Two
Optimization Methods

the network to diverge. Indicating 7 and o relation is important
to fine-tune. Specifically, one needs to decrease o to increase
7, indicating an important trade-off. Study of this trade-off
is left open for further research. CAWR benchmark tends to
perform better with increasing learning rate until n = 0.25
where is peaks at 98.36%, then a small performance decrease is
observed. Yet, we note that due to the cos nature, the effective
learning rate is 7/2. We conclude that CAWR has more
tolerance to 1 choice, while ME-IT achieves the highest
peak performance. Note that for a larger 7, CAWR would
also diverge as well.

V. CONCLUSIONS

In this work, we addressed the persistent challenge of
gradient-based optimizers becoming trapped in suboptimal
regions of the neural network loss landscape. We introduced
ME-IT, a novel optimization technique that improves standard
models by leveraging the inherent monomial symmetries of
feedforward networks. By periodically applying computation-
ally inexpensive, loss-preserving jumps, our method effectively
relocates the model to new regions of the parameter space,
allowing it to escape plateaus and poor local minima to find
more effective descent paths.

We empirically demonstrated that ME-IT optimizer leads
to better generalization and higher test accuracy with shorter
converge times. This implies less data will be required to train
the network. We proposed a heuristic method for calculating
such jumps and investigated the introduced hyper-parameters.
We have shown the benefits of ME-IT optimizer are available
for a wide-range of hyper-parameter configurations. Yet, we
have observed that setting too large a learning rate may cause
the ME-IT optimizer to diverge. How to choose diagonal
matrices D so that divergence is prevented with maximal
benefit is still an open question, and left as a further study.
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This study was conducted on feedforward neural networks,
and the direct extension of this specific monomial jump to
architectures with different symmetry groups, such as Con-
volutional Neural Networks, remains another open question.
While we have shown that ME-IT finds “better” regions of
the loss landscape, a deeper theoretical understanding of the
geometric properties that make these regions more favorable
for optimization is a subject for further investigation. Finally,
beyond finding a single superior model, ME-IT could be used
as a powerful tool to generate ensembles of diverse, high-
performing models from a single training run, potentially at
a negligible additional computational cost.
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