
Low-Rank Compression of Neural Network Weights
by Null-Space Encouragement

Arda Ozdemir, Ozgur Soysal, Ege Doganay, Yigit Yildirim and Orhan Arikan
Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey

E-mail: arda.ozdemir@ug.bilkent.edu.tr, ozgur.soysal@ug.bilkent.edu.tr, ege.doganay@ug.bilkent.edu.tr,
yigit.yildirim@bilkent.edu.tr, oarikan@ee.bilkent.edu.tr

Abstract—Deep neural networks are often heavily over-
parametrized for their purposes, making them costly to store
and run on resource-constrained devices. Therefore, compressing
them into fewer parameters with minimal performance loss
is essential. One popular way is the low-rank decomposition
because high-dimensional data often lie near a lower-dimensional
manifold, and the most important features can be captured by the
dominant singular values of the weight matrices. In this work, we
first compress pretrained models into their low-rank forms (SVD
or CP). The compressed low-rank network becomes the student
and the original over-parametrized network becomes the teacher.
Next, we exploit the low-rank structure of the approximated
weight matrices by projecting the mismatch of intermediate
activations onto the null space of the low-rank weight matrices,
ensuring that the student focuses on the teacher’s task-relevant
directions. Finally, we use knowledge distillation to align outputs
of the student and the teacher. We validate our approach on
tasks involving fully connected layers and/or convolutional layers,
achieving up to 90% parameter and 80% FLOP reduction, with
either < 1% accuracy drop or up to 1.68% gain on MNIST,
CIFAR-10, and CIFAR-100 benchmarks. We also compare our
method with previously proposed FitNets [1] and Gramian [2] to
show that the proposed technique is better at maintaining higher
accuracy. These results indicate that the proposed technique not
only reduces model size but also acts as a regularizer, improving
generalization.

I. INTRODUCTION

Deep neural networks have shown revolutionary results in
various domains from image recognition to natural language
processing, emerging from the success of [3] and later of [4].
Despite their expressive power, modern architectures are often
heavily over-parameterized, leading to large memory footprints
and high computational costs that impede deployment on
mobile and embedded devices.

To address this challenge, a variety of model compression
techniques have been proposed, including pruning and quanti-
zation [5], knowledge distillation [6], and exploiting low-rank
structures in weight tensors. However, existing low-rank ap-
proaches suffer from performance losses as they aim to mimic
the teacher one-to-one. In this work, we introduce a unified
framework that combines low-rank factorization with a novel
null-space projection loss and standard distillation to produce
compact yet high-performing students. Our contributions are
threefold:

1) We propose to initialize student layers via truncated
SVD by using approximate methods like [7] for fully-
connected layers and CP decomposition for convo-
lutional kernels, immediately reducing parameters by
about 90%.

2) We propose to employ null-space absorbing loss in
the supervised fine-tuning stage of the compression to
encourage the student to conduct parameter updates such
that the difference between resulting hidden activations
of the student and the original activations of the teacher
are kept within the kernels of the teacher weights. This
ensures only task-relevant directions are transferred to
the student rather than point-to-point matching.

3) We aim for accuracy-focused compression rather than
merely parameter reduction and incorporate knowledge
distillation to fine-tune the student, enabling about 80%
FLOP reduction keeping about the same performance on
MNIST, CIFAR-10 and CIFAR-100.

The remainder of the paper is organized as follows. Section II
reviews related work on neural network compression. Section
III details our proposed framework. Section IV presents our
experimental results, and Section V concludes with future
directions.

II. RELATED WORK

In [6], knowledge distillation is introduced by training
a compact student network from a larger teacher network.
Specifically, the student minimizes the Kullback-Leibler (KL)
divergence between its softened output probability distributions
and the teacher’s, which is controlled with a temperature hy-
perparameter. This foundational technique proved that compact
models can approximate larger models with minimal perfor-
mance loss, paving the way for more advanced distillation and
compression methods such as in [8] where the Wasserstein
distance (WD) based distillation is introduced. Their work
remodels the one-to-one class matching of KL divergence
by an optimal transport problem. In this work, we focus on
distilling low-rank students from larger teachers.

In [1], the authors address the problem of training students
that are thinner and deeper than the teachers by introducing
hidden-layer hints. They aim to optimize the training of the stu-
dent by guiding it towards intermediate representations. First,
activation of a teacher network layer and the corresponding
student layer are selected. Then, the student is trained up to
that layer to minimize the ℓ2 distance between the activa-
tions with a small regressor to align their dimensions. Next,
the student weights are jointly trained with the knowledge
distillation and the classification losses. In [2], this hidden
layer guidance is performed by matching cross-layer Gramian
matrices, extracting feature correlations across different layers,
and combining with KL divergence-based distillation. Like [1],

2025 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

979-8-3315-7206-8/25/$31.00 ©2025 IEEE 1194

20
25

 A
sia

 P
ac

ifi
c

Si
gn

al
 a

nd
 In

fo
rm

at
io

n
Pr

oc
es

sin
g

As
so

ci
at

io
n

An
nu

al
 S

um
m

it
an

d
Co

nf
er

en
ce

 (A
PS

IP
A

AS
C)

 |
 9

79
-8

-3
31

5-
72

06
-8

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AP
SI

PA
AS

C6
52

61
.2

02
5.

11
24

92
99

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on December 04,2025 at 11:47:56 UTC from IEEE Xplore. Restrictions apply.

[2], we leverage hidden features, but we project activation
mismatches into the teacher’s discarded subspace to focus on
learning task-related directions.

Many works take advantage of the low-rank nature of weight
tensors, exploiting the manifold hypothesis, to compress large
networks. [9] initializes a low-rank student by reshaping con-
volutional kernels into matrices and applying truncated SVD to
them, and fully connected layers. Likewise, [10], uses singular
values and right singular vectors from convolutional layers to
serve as hints to align the teacher and the student in principal
directions. In [11], CP decomposition is used to approximate
convolutional layers, before a fine-tuning phase. In [12], layer
tensors are unfolded along input/output channels, their ranks
are estimated via global analytic VBMF to capture significant
features, and those ranks then guide Tucker-2 decomposition,
whose low-rank factors replace the originals for training.
[13] adds a structured-sparse component to each low-rank
weight tensor by solving a convex optimization problem that
minimizes post-ReLU reconstruction error. These studies show
that low-rank approximations yield significant reductions in
floating point operations (FLOPs) and parameters. In this work,
we exploit the nature of these low-rank approximations. Simi-
lar to [9], a low-rank student is initialized via decompositions
of the layers of the teacher, then the student is fine-tuned
in such a manner that the hidden activations do not exactly
match the teacher’s per layer, but the difference between two
activations is in the null space of that layer.

III. NULL SPACE ABSORBING NETWORK (NSA-NET)

In this section, proposed NSA-Net distillation is described
with its mathematical background. The main idea of NSA-
Net is to fine-tune the decomposition matrices such that any
change made to an activation is absorbed in the null space
of the next layer. To initialize the student, NSA-Net employs
low-rank decompositions. Yet, initializing the student layers
randomly would then cause the resulting layers to be full-
rank due to the Rank-Nullity theorem [14]; thus reducing
possible compression. To circumvent this, we further propose
to initialize the student weights as low-rank decompositions
of the teacher’s weights. We then supplement these low-rank
decompositions with a fine-tuning phase.
A. Student Initialization

Layers of a pretrained teacher model are approximated with
fewer parameters by applying truncated SVD to fully con-
nected layers and CP decomposition to convolutional layers.
Due to the complexity of SVD, iterative methods such as [7]
can be employed. This approximation is expected to cause a
performance decrease. The decomposition rank needs to be
chosen carefully. Depending on this choice, the student can
catch and even surpass the teacher’s performance with a fine-
tuning phase. Below, details of these decompositions are given.
See Section III-B for details on the said fine-tuning phase.

For fully connected layers, SVD choice is based on the
widely cited manifold hypothesis, which argues that a set
of high-dimensional data usually lies on a lower-dimensional

manifold. For neural networks, this implies weights admit low-
rank structures. The truncated SVD choice is then justified
by the Eckart-Young theorem. Truncated SVD of a matrix
A ∈ Rm×n, denoted by Ar r < min(m,n), is given by

Ar = UrΣrV
⊤
r with A = U ΣV ⊤ , (1)

Ur =[u1,· · · , ur],Σr=diag(σ1,· · · , σr),Vr=[v1,· · · , vr] . (2)

SVD fails to describe N -way tensors accurately. Thus, we
resort to CP decomposition for convolutional layers. In a
CNN, filter banks are viewed as 4th-order tensors as X ∈
RCin×Cout×k1×k2 with Cin input channels, Cout output chan-
nels, and spatial filter size of k1×k2. The filters are 3D tensors
in the form F ∈ RCin×k1×k2 that maps Cin input channels
into one output channel. Two methods stand out for tensor
decomposition named CP decomposition [15], [16] and Tucker
decomposition [17]. In short, both decompose tensors into
rank-1 terms, vectors, CP results in vectors of identical length
while Tucker allows the freedom of choosing separate sizes for
the terms. For simplicity and practicality, CP decomposition
is utilized in this work. CP decomposition is essentially the
combination of CANDECOMP by [15] and PARAFAC by
[16]. The algorithm in 4-way tensors as X ∈ RI1×I2×I3×I4

can be summarized as follows.
a) Initialization: First choosing a factor R, unfolding the

tensor in one mode such as X1 ∈ RI1×I2I3I4 and initializing
four matrices denoted by Ai ∈ RIi×R, i = 1, 2, 3, 4. The
Gramian matrices are formed as follows.

Gi = (A⊤
j Aj) ◦ (A⊤

k Ak) ◦ (A⊤
l Al) , (3)

where ◦ denotes element-wise multiplication (Hadamard prod-
uct) and j = 1, 2, 3, 4 ̸= i. Another matrix, K, is formed as
follows.

Ki = Aj ⊙Ak ⊙Al , (4)

where ⊙ denotes column-wise Kronecker product.
b) ALS Updates: The original matrix Ai is updated as

follows.
Ai ← XiKi(Gi)

† , (5)

where † denotes pseudo-inverse. Let air denote the columns
of the matrix Ai, r = 1, 2, . . . , R. The column vectors are
updated to maintain numerical stability as such.

air ←
air
λr

, λr = ||air||2 . (6)

c) Termination: The procedure is repeated for all i. The
new tensor X̂ is computed as follows.

X̂ =
R∑

r=1

λra
1
r ⊗ a2r ⊗ a3r ⊗ a4r , (7)

where ⊗ denotes tensor product. The process is repeated until
a specified limit of convergence is met as

∣∣∣∣X − X̂
∣∣∣∣
F
< ϵ or

the maximum number of iterations is reached. The procedure is
also known as alternating least squares (ALS) method. The de-
composition will be in the center of compressing convolutional

2025 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 1195

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on December 04,2025 at 11:47:56 UTC from IEEE Xplore. Restrictions apply.

layers because at the end of the algorithm, the parameter num-
ber is reduced from CinCoutk1k2 to R(Cin+Cout+k1+k2),
yielding a compression ratio in the control of the user.

After the teacher is fully trained, its layers are approximated
with fewer parameters by applying the above decompositions.
Then, the student is fine-tuned so that its performance is
brought to the level of the teacher.
B. Supervised Fine-tuning Phase

To alleviate performance loss caused by approximate de-
compositions, a fine-tuning phase is necessary. To this end,
NSA-Net adopts null space loss so that changes to activations
of the student are absorbed in the null space, preserving the
input-output function of the teacher.

The core of our model depends on absorbing hidden activa-
tion differences in the null-spaces (kernels) of the correspond-
ing layer. For any linear transformation T : Rn → Rm, its
kernel is,

ker(T) = {x ∈ Rn
∣∣Tx = 0} . (8)

Dually, the orthogonal complement of the null-space is the
row-space of T . Every vector x ∈ Rn has a unique orthogonal
decomposition in the form of

x = x∥ + x⊥ where x∥ ∈ Row(T), x⊥ ∈ ker(T) . (9)

Then, the output of that layer, y ∈ Rm is constructed solely
from x∥. Namely,

y = Tx = T (x∥ + x⊥) = Tx∥ . (10)

In the perspective of neural networks, the kernel component
of the input has no effect on the transformation hence can
be regarded as irrelevant information with no effect on the
flow of the network. Using a similar idea to Fitnets ([1]),
the student network is guided in a way in which, rather
than matching hidden activations point-wise, we encourage
the student’s difference from the teacher to be absorbed in the
null-spaces. In that way, students would only learn what would
affect their final output. Since the student weights are low-rank
forms of the teacher that are factored as Ŵi = UiV

⊤
i , where

Ŵi ∈ Rm×n, U ∈ Rm×r, V ∈ Rn×r and r < min(m,n).
The dimension of the kernel of any student layer will be
larger, dim(ker(Ŵi)) = min(m,n) − r. Besides transferring
only the important features from the teacher, penalizing the
null component will be much more flexible for the training
phase compared to point-wise matching hidden outputs. The
following loss term is utilized for this purpose

Lnull =
∑

i

∣∣∣∣Ŵi(hi − ĥi)
∣∣∣∣2
2
. (11)

where the summation is over all applicable student layers. In
this way, the student will be guided to learn the semantic
information from the hidden features of the student; only
caring about features that affect the final output, i.e., those that
reside in the row-space of the transformation and absorbing
others. Letting ei := (hi − ĥi), we have

Lnull =
∣∣∣∣Ŵiei

∣∣∣∣2
2
=

∣∣∣∣Ŵi(e
∥
i + e⊥i)

∣∣∣∣2
2
=

∣∣∣∣Ŵie
∥
i

∣∣∣∣2
2

(12)

=⇒ e
∥
i → 0 ,

implying the parallel component is driven to 0. Thus, the
loss flattens the teacher–student error onto the normal bundle,
forcing all discrepancies to lie perpendicular to the row-space
manifold. Note that the loss term is applied to both fully
connected and convolutional layers.

Due to the noisy nature of gradient updates, the orthonor-
mality of the left matrices will be altered. A regularization
term is added to the loss to preserve orthonormality:

Lorth =
∣∣∣∣U⊤

i Ui − I
∣∣∣∣2
F

, (13)

as UTU = U if and only if U is orthonormal. Ŵi can be
represented with an infinite number of (Ui, Vi) pairs and
(13) chooses the one with orthonormal Ui. It is also possible
to use explicit normalization, such as QR factorization after
each gradient update to guarantee orthonormality but slow
down training for large models. Orthonormality will ensure
a numerically stable row basis in Ui with all singular values
equal to 1. Training and convergence will be faster because the
gradients that flow through will not be amplified or attenuated.

The last term for the fine-tuning phase is knowledge distil-
lation loss.

LKD = d(y, ŷ) , (14)

where y and ŷ are the outputs of the final linear layer of
the teacher and student, respectively, d(., .) denotes a general
metric. The possibilities are KL divergence or WD [6], [8].
KL divergence has proven to be simple and effective in many
distillation scenarios. Despite its success, it can cause gradients
to explode if the teacher distribution is too concentrated. Alter-
natively, WD is bounded and guarantees a smooth behavior for
gradients. Unlike KL divergence, WD respects geometry where
if neighboring classes have intrinsic similarities (e.g., class 1
is more alike 2 than class 5), it penalizes farther mismatches
more but, not every task has that property. The 1-Wasserstein
distance metric is shown below.

W (X1, X2) =
∑

x

∣∣FX1
(x)− FX2

(x)
∣∣ , (15)

where X1, X2 are distributions and FX1
(x), FX2

(x) are their
CDFs.

All these components are combined into one augmented
fine-tuning loss L in the form of,

L = Lsup + αLnull + βLKD + λLorth . (16)

Lsup is a generalized supervised loss term that can change
from task to task (e.g., cross-entropy in classification, MSE in
regression, etc.), enabling the student generalize better than an
over-parametrized teacher. d(·, ·) is a generalized knowledge
distillation loss function between output logits, which is KL
divergence or Wasserstein distance in our case, encouraging the
student to learn the teacher’s mapping. Low-rank initialization
allows the student to start from a well-performing point. Thus,
the fine-tuning process utilizes a small adaptive learning rate
that decays after several epochs, leading to convergence. The
updated parameters of the model are the Ui, Vi and the CP

2025 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 1196

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on December 04,2025 at 11:47:56 UTC from IEEE Xplore. Restrictions apply.

decomposed 1-D convolutional layer vectors. Consider a linear
layer of the teacher model as follows.

h = σ(Wx+ b) . (17)

Where σ is an arbitrary activation function. For the student
model, a forward pass is given by,

V ⊤x = z ⇒ Uz + b = α⇒ h = σ(α) . (18)

Hence, the updates of the student are given as;

U ← U − η
∂L
∂U

, V ← V − η
∂L
∂V

, b← b− η
∂L
∂b

, (19)

with the following gradients derived by backpropagating L
through U and V :

∂L
∂α

=
∂L
∂h
◦ σ′(α) , (20)

∂L
∂U

=
∂L
∂α

z⊤ +
∂Lorth

∂U
, (21)

∂L
∂V

= x(U⊤ ∂L
∂α

)⊤ , (22)

∂L
∂b

=
∂L
∂α

. (23)

A similar derivation can be done for the convolutional kernels
as well. IV. EXPERIMENTS

We evaluate NSA-Net across 3 benchmarks of increasing
complexity. First, we replicate the LeNet-5 architecture on
the MNIST digits dataset [3]. Next, we adopt a lightweight
VGG-style network with stacked 3×3 convolutions on CIFAR-
10 [18], trained for 10 epochs with Adam and 10−3 learning
rate. Third, we test AlexNet on CIFAR-100 [4], trained for
50 epochs with SGD, 10−2 learning rate, 5 × 10−4 weight
decay and 0.9 momentum. In each case, the original network
serves as the teacher; we initialize a corresponding low-
rank student via our factorization scheme and train it with
(16). 4 teachers are used for distilling 5 students each for
MNIST and CIFAR-10, 2 teachers and 3 students each are
trained for AlexNet [4]. We sweep the student’s rank to obtain
compression factors ranging from 10× to 30×. We let NSAx-
Net denote the resulting student with rank x. We also test
cascade type distillation, in which we first distill a rank x
student from the teacher, then the rank x student becomes the
teacher for a rank y < x student. This method is denoted as
NSAx,y-Net. The training is carried out using batch sizes of
64 with Adam optimizer with an adaptive step learning rate
0.001 that has a step size of 2 and decay rate 0.7. The trained
students are evaluated on classification accuracy, number of
parameters, and FLOPs on each task. Every model is trained
for the same number of epochs.
A. Hyperparameter Sensitivity

We begin with a hyperparameter search for α, β, λ to study
how they affect student distillation. The teacher is LeNet-5
trained on the MNIST dataset, which obtains a test accuracy
of 98.79% with 431080 parameters. Students with 20× and
30× compression ratios relative to the teacher are averaged
over 3 seeds. Fig. 1a demonstrates how α choice affects

(a) Test Accuracy vs. α (b) Convergence of Lnull

Fig. 1: α Analysis (β = 0.1, λ = 0.1)

(a) Test Accuracy vs. β (b) Convergence of LKD

Fig. 2: β Analysis (α = 0.1, λ = 0.1)

the test accuracy, while Fig. 1b shows the fine-tuning loss
curve for Lnull. From Fig. 1a, it is possible to deduce that
accuracy is robust to α for the 20× compressed model. For
the smaller student, too large or too small α leads to visible
performance loss, where the student either focuses too much
on hidden features or does not focus at all, the loss curve
with α = 0.001 validates this. Next, we focus on the LKD

term. In Fig. 2, we compare WD and KL divergence as
the knowledge distillation loss term with varying β. Fig. 2a
shows test accuracies and Fig. 2b shows how LKD evolves
over epochs. NSA-Net remains relatively robust to β choice,
the fastest and most stable convergence is achieved when
β = 0.1, where the associated loss term reduces to half in
fewer epochs. KL divergence and WD do not produce much
distinctive results but it is visible that the model shows a
sharper logit alignment with KL divergence. However, to avoid
potential instabilities of the KL divergence, we adopt WD for
the following experiments. In Fig. 3, we present the results
for various λ. Fig. 3a shows the student performances for
λ ∈ [10−2, 100]. We observe that accuracy remains around
99% for both tested students. The main difference is seen in
Fig. 3b, which shows the model mean condition number for
various λ. We observe that condition numbers are very close
to 1, and increasing λ makes the gap smaller. However, we
can observe from Fig. 3d that increasing λ comes with slower
convergence of students. Thus, we choose λ = 0.1 for the
following experiments.
B. Accuracy Analysis

First, NSA-Net is evaluated on the MNIST [3] with the hy-
perparameter configuration found in the previous section. The
teachers are initialized at 4 seeds, and 5 students are generated
from each teacher. We compare NSA-Net with hidden-layer
feature extraction-based approaches FitNets [1] and Gramian

2025 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 1197

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on December 04,2025 at 11:47:56 UTC from IEEE Xplore. Restrictions apply.

(a) Test Accuracy vs. λ (b) Condition Number vs. λ

(c) Convergence of Lorth (d) Epochs to Converge vs. λ

Fig. 3: λ Analysis (α = 0.1, β = 0.1)

[2]. FitNets [1] is designed for thinner and deeper students,
matching chosen hidden features point-wise. Gramian-based
approach [2] aligns the pairwise channel correlations between
the teacher and the student feature maps via their Gramian
matrices. For comparison, all student models are initialized
with roughly the same parameter count. In Table I, we report
the average test accuracy and 1 mean standard deviation for 4
initializations. FLOPs merge additions and multiplications into
a single count.

NSA10-Net surpasses the teacher by an average difference
of 0.20%, while reducing FLOPs by 70% and parameters by
20-30×. Cascade distillations demonstrate that an intermediate
student can serve as a teacher where they perform within
the margins of the directly distilled students. Overall, NSA-
Net compresses over-parameterized teachers into much smaller
students that match or exceed their accuracy with dramatically
fewer resources. We see our method outperforms in terms of
accuracy in the MNIST dataset for both model sizes. The
advantages over FitNets [1] and Gramian-based method [2]
are that our absorbing loss allows more flexibility than direct
matching and leverages low-rank structure. One disadvantage
we have is the number of FLOPs, which is due to the truncated
SVD nature of fully connected layers.

Secondly, we evaluate NSA-Net on a more complex dataset,
CIFAR-10 [20]. We use a VGG-style teacher with two convo-
lutional blocks (each with two 3x3 filters), increasing feature
maps from 3 → 32 → 64, followed by a two-layer MLP
(4096→ 128→ 10). The experiments are conducted similarly
to the MNIST case, and results are reported in Table II.
From Table II, we observe that the rank 10 student obtains
the highest accuracy among all tested algorithms and exceeds
the teacher by a margin of 0.45% on average. NSA-10-Net
achieves the highest performance in its parameter count class.
If we are to distill further, we observe that FitNets [1] obtain

TABLE I: Compression vs. Accuracy on MNIST [19]

Model Test Accuracy FLOPs #Parameters

Teacher 98.85%± 0.11% 2.292M 431080

NSA10-Net 99.05%± 0.07% 0.705M 21500
NSA25,10-Net 99.07%± 0.07% 0.705M 21500

FitNets [1] 98.69%± 0.11% 0.479M 21598
Gramian [2] 98.63%± 0.08% 0.221M 21466

NSA6-Net 98.80%± 0.10% 0.698M 14260
NSA25,6-Net 98.70%± 0.14% 0.698M 14260

FitNets [1] 98.41%± 0.13% 0.134M 14260
Gramian [2] 98.57%± 0.11% 0.214M 14970

TABLE II: Compression vs. Accuracy on CIFAR-10 [20]

Model Test Accuracy FLOPs #Parameters

Teacher 70.92%± 0.35% 25.003M 591274

NSA10-Net 71.37%± 0.23% 3.943M 53566
NSA25,10-Net 70.75%± 0.16% 3.943M 53566

FitNets [1] 70.74%± 0.75% 2.616M 53576
Gramian [2] 67.12%± 1.02% 3.801M 53582

NSA6-Net 69.89%± 0.18% 3.926M 36670
NSA25,6-Net 68.79%± 0.18% 3.926M 36670

FitNets [1] 70.45%± 0.58% 2.598M 35986
Gramian [2] 63.24%± 1.63% 3.785M 37110

the highest accuracy while our rank 6 student is within 1
standard deviation behind. Similar to the MNIST dataset, we
observe that the number of FLOPs for our algorithm remains
significantly higher than other methods.

Cascade distillations incur a visible performance loss vs.
direct students, −0.62% on rank-10, −1.10% on rank-6.
This shows that while intermediate students can teach further
compressions, each stage introduces accuracy loss. Overall,
although our teacher reaches only about 71% accuracy, NSA10-
Net still exceeds or matches its performance, demonstrating
that NSA-Net acts as a powerful regularizer, refining teacher
logits, even for under-parameterized models.

Next, we evaluate NSA-Net on CIFAR-100 [20] dataset and
the AlexNet architecture [4]. Reduced SVD is calculated and
then truncated to initialize the students for computational cost.
Table III shows that the NSA is ahead of the teacher model. We
compare only FitNets [1] as it performed better, resulting in
more FLOPs than NSA-Net, as it contains more layers. NSA-
Net obtains 10.82 : 1 reduction with 53.74% accuracy while
FitNets obtains 9.16 : 1 reduction with 53.74% accuracy.

V. CONCLUSIONS

In this work, we proposed a novel teacher-to-student dis-
tillation method to reduce the number of parameters of a
network without a significant decrease in accuracy. In the
proposed NSA-Net method, students are initialized as low-rank
approximations of the teacher’s layers, then a supervised fine-
tuning phase is conducted for minimal performance loss. A
novel term in the fine-tuning loss is proposed so that changes
made to the student parameters are absorbed in the kernels
of the layers. NSA-Net enables the student to match teacher

2025 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 1198

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on December 04,2025 at 11:47:56 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Compression vs. Accuracy on CIFAR-100 [20]

Model Test Accuracy FLOPs #Parameters

Teacher 52.06%± 0.34% 1.13G 58.69M

NSA-Net 53.74%± 0.53% 0.17G 5.40M

FitNets [1] 51.16%± 1.01% 0.37G 6.41M

performance or even surpass it, due to supervised loss. In
the MNIST, CIFAR-10, and CIFAR-100 datasets, we have
demonstrated that NSA-Net achieves better accuracy with a
similar number of parameters compared to FitNets [1] and
Gramian [2].

We have shown that NSA-Net is successful in general
convolutional architectures. Future work may explore its ap-
plication to other architectures, including recurrent models,
transformer-based architectures, and graph networks, as well
as constructing deeper students than their teachers.

REFERENCES

[1] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang,
C. Gatta, and Y. Bengio, “Fitnets: Hints for thin deep
nets,” in International Conference on Learning Repre-
sentations, 2015.

[2] H.-H. Chou, C.-T. Chiu, and Y.-P. Liao, “Deep neural
network compression with knowledge distillation using
cross-layer matrix, kl divergence and offline ensemble,”
in 2020 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA
ASC), 2020, pp. 71–75.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. DOI: 10.1109/5.726791.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” in Advances in Neural Information Process-
ing Systems, vol. 25, Curran Associates, Inc., 2012,
pp. 1097–1105.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” in Proceedings of the
International Conference on Learning Representations
(ICLR), Best Paper Award, 2016. [Online]. Available:
https://arxiv.org/abs/1510.00149.

[6] G. Hinton, O. Vinyals, and J. Dean, “Distilling
the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[7] J. Baglama and L. Reichel, “Augmented implicitly
restarted lanczos bidiagonalization methods,” SIAM
Journal on Scientific Computing, vol. 27, no. 1, pp. 19–
42, 2005. DOI: 10 . 1137 / 04060593X. eprint: https : / /
doi.org/10.1137/04060593X. [Online]. Available: https:
//doi.org/10.1137/04060593X.

[8] J. Lv, H. Yang, and P. Li, Wasserstein distance rivals
kullback-leibler divergence for knowledge distillation,
2024. arXiv: 2412 . 08139 [cs.CV]. [Online]. Avail-
able: https://arxiv.org/abs/2412.08139.

[9] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and
R. Fergus, “Exploiting linear structure within convolu-
tional networks for efficient evaluation,” in Advances in
Neural Information Processing Systems, vol. 27, 2014,
pp. 1269–1277.

[10] S. H. Lee, D. H. Kim, and B. C. Song, “Self-supervised
knowledge distillation using singular value decompo-
sition,” in European Conference on Computer Vision,
2018.

[11] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V.
Lempitsky, “Speeding-up convolutional neural networks
using fine-tuned cp-decomposition,” in International
Conference on Learning Representations (ICLR), 2015.

[12] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and
D. Shin, “Compression of deep convolutional neural
networks for fast and low power mobile applications,” in
International Conference on Learning Representations
(ICLR), 2016.

[13] Y. Ma, R. Chen, W. Li, et al., “ A Unified Approxima-
tion Framework for Compressing and Accelerating Deep
Neural Networks,” in 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI),
2019, pp. 376–383.

[14] S. Banerjee and A. Roy, Linear Algebra and Matrix
Analysis for Statistics (Chapman & Hall/CRC Texts
in Statistical Science), 1st. Boca Raton, FL: Taylor
& Francis Group / CRC Press, 2014, p. 582, ISBN:
9781420095388. DOI: 10.1201/b17040.

[15] J. D. Carroll and J.-J. Chang, “Analysis of individual
differences in multidimensional scaling via an n-way
generalization of “eckart–young” decomposition,” Psy-
chometrika, vol. 35, no. 3, pp. 283–319, 1970. DOI:
10.1007/BF02310791.

[16] R. A. Harshman, “Foundations of the PARAFAC pro-
cedure: Models and conditions for an “explanatory”
multi-modal factor analysis,” UCLA Working Papers in
Phonetics, Tech. Rep. 16, Dec. 1970, pp. 1–84.

[17] T. G. Kolda and B. W. Bader, “Tensor decompositions
and applications,” SIAM Review, vol. 51, no. 3, pp. 455–
500, 2009. DOI: 10.1137/07070111X. eprint: https: / /
doi.org/10.1137/07070111X. [Online]. Available: https:
//doi.org/10.1137/07070111X.

[18] K. Simonyan and A. Zisserman, Very deep convolutional
networks for large-scale image recognition, 2015. arXiv:
1409.1556 [cs.CV]. [Online]. Available: https://arxiv.
org/abs/1409.1556.

[19] Y. LeCun and C. Cortes, “MNIST handwritten digit
database,” 2010. [Online]. Available: http://yann.lecun.
com/exdb/mnist/.

[20] A. Krizhevsky, “Learning multiple layers of features
from tiny images,” University of Toronto, Tech. Rep.,
2009. [Online]. Available: https://www.cs.toronto.edu/
∼kriz/learning-features-2009-TR.pdf.

2025 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 1199

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on December 04,2025 at 11:47:56 UTC from IEEE Xplore. Restrictions apply.

